
Eight-vertex model on a ruby lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 3201

(http://iopscience.iop.org/0305-4470/17/16/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math Gen. 17 (1984) 3201-3207. Printed in Great Britain 
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Physics Department, National Tsing Hua University, Hsinchu, Taiwan, Republic of China 

Received 21 February 1984 

Abstract. An eight-vertex model on  a ruby lattice with staggered (site-dependent) vertex 
weights is considered. The special case of a free-fermion model is solved by the Pfaffian 
method. In general the specific heat has logarithmic singularity at the critical temperature, 
except in some special cases where the system exhibits a first- or second-order phase 
transition. 

1. Introduction 

Recently the residual entropy of two-dimensional ice (ice model) on a ruby lattice 
(figure 1 )  was calculated by the method of series expansion (Lin and Ma 1983a) and 
the Ising model on a ruby lattice was solved exactly by the method of Pfaffian (Lin 
and Ma 1983b). The ice model is a special case of the eight-vertex model. The 
eight-vertex model on a square lattice was solved exactly by Baxter (1971). 

The staggered eight-vertex model on a square lattice which allows different vertex 
weights for the two sublattices was studied by Hsue et a1 (1975), they used the Pfaffian 
method to solve exactly the special case where the vertex weights satisfy the so-called 
free-fermion conditions (Fan and Wu 1970). Their result was generalised to four 
sublattices by Lin and Wang (1977). The Pfaffian solution of the eight-vertex model 
on a Kagomk lattice was derived by Lin (1976). The purpose of this paper is to study 
the Pfaffian solution of the eight-vertex model on a ruby lattice. 

Figure 1. A ruby lattice with six sublattices A, B, C, D, E and F. 
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2. Definition of the model 

Arrows are placed on the bonds of a ruby lattice L of N sites and only those 
configurations with an even number of arrows pointing into each vertex are allowed. 
The six sublattices of L are denoted by A, B, C, D, E, and F, as shown in figure 1. 
The eight possible configurations allowed at each vertex are shown in figure 2, where 
each vertex type is assigned a weight. Let the vertex weights be denoted by ma, ,  where 
a = A  , . . . ,  F a n d  i = l ,  . . .  8. 

11 I 121 131 161 171 

Figure 2. The eight-vertex configurations 

The partition function is 

2 = X(rIw;f) 

where the summation is extended to all allowed arrow configurations on L, and n,,i 
is the number of the ith-type sites on the a-sublattice. The goal is to compute the free 
energy 

1 
$ = lim -In 2. 

N+a N 

In a physical model, the vertex weights are interpreted as the Boltzmann factors 

where P = l / k T ,  k is the Boltzmann constant, T is the temperature, and E is the vertex 
energy. The ice model corresponds to the special case U,,, = 0 for i = 1,. . . , 6  and 
w,,7 = w,,p. = 0. 
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The partition function Z possesses some symmetry relations which follow from 
general considerations. Reversing all arrows along each triangle implies that Z is 
invariant under the following exchanges 

1-5, 2-6, 3-8, 4-7 

where i denotes w , , ~  Similarly, reversing all the arrows implies that Z is invariant under 

1-2, 3-4, 5-6, 7-8. 

Rotational symmetry implies 

Z ( A , B , C , D , E , F ) = Z ( C , A , B ,  F , D , E )  

= Z( D, E, F, A, B, C )  
where A denotes etc. 

(4) 

3. Pfaffian solution 

A vertex model can be solved exactly by the method of Pfaffian and dimer city 
(Kasteleyn 1963) if the free-fermion condition is satisfied at each vertex (Fan and Wu 
1970). In our model, the condition reads 

Wn,l Wcr,2 + W m % 3 W a , 4 =  Wa,5Wa,6 + @a,?@n,8 (5) 

for all a. Under this condition the partition function is equal to a Pfaffian which is 
evaluated in the appendix. The result is 

where 

~=~ :+nf+a :+n :+2(~’n , -n ,n , )  cos 8 

+2(Q2R4-R&) COS 4 +2(f&f&-fi1&) cos(e- 4)  
- 4a sin2( 8 - 4) - 4b sin’ 8 - 4c sin’ d 

-4d  sin 8 sin 4 - 4 e s i n  4 sin (4 -  6)-4fsin I3 s i n ( 8 - 4 )  

C l ,  = ( 1  1 1  +555)( 11  1 +555)* +(222 +666)(222 +666)* 

+X[(436 +782)(436 +782)* +(345 +871)(345 +871)*] 

ijk W A , 8 W B J W C . k  

( i jk )*  W D , , W E , , W F , ~  

C( i jk ) ( lmn)*=  ( i jk ) ( lmn)*  +Cjki)(mnl)* + (k i j ) (n lm)*  

Q2(A, B, C, D, E, F) = (61 1 +255)(143 +578)* 

+ (166 + 522)(234 +678)* + (836 +382)(764 +427)* 

+(853 +318)(471+745)*+(A-D, B-E,C-F) 

= n2(C, A, B, F, D, E) 

a4 = W B ,  c, AY E, F, D )  
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a(A, B, C, D, E, F) = [( 12 -78)(3646 +2827) + (2523 -3768)24 + (1668 -4823)67] 

~[(12-78)(3646+2827) +(2523 -3768)24+(1668-4823)67]* 

+[( 12 - 78)( 17 18 +4535) + (1614 - 4857) 13 + (2557 - 3714)58] 

x[( 12 - 78)( 1718 +4535) +( 1614-4857)13 +(2557 -3714)58]* 

+{[( 12 - 78)( 1746 +4527) + (1614-4857)67 + (2557 - 3714241 

x [(4823 - 1668) 13 + (3768 - 2 5 2 3 ) s  - ( 12 -78)(3618 +2835)]* 

+( 12 - 78)(34 - 78)(34-78)[(56 +78)( 12 -78)( 12 -78) 

+( 12 - 78)(56 +78)(56 +78) + (1616 -4837) 16 

+( 1648 -4825)37 +(2525 -3748)25 +(2537-3716)48]* 

+(A-D, B H E ,  C-F)} 

ijjklmn = WA,iWA,jWB,kOB,lWC,mOC,n 

( ijklmn ) * WD,iWD,  j@E,kWE,IW F , m u F , n  

6 = a ( C ,  A, B, F, D, E) 

c = u(B,  C, A, E, F, D) 

d(A, B, C, D, E, F)=(34-78)(2423-6768)[66(1616-4837) +22(2525-3748) 

+ 26( 12 - 78)( 56 +78) + 26( 56 + 78)( 12 - 78)]* 

+ (34 - 78)(2457 - 67 14)[33( 1648 - 4825) + 88(2537 - 3716) 

+38( 12 - 78)(56 +78) +38(56 +78)( 12 - 78)]* 

+ (34 - 78)( 13 14 - 5857)[ 1 1 ( 1616 - 4837) + 55(2525 - 3748) 

+ 15( 12 - 78)(56 +78) + 15(56 +78)( 12 - 78)]* 

+(34-78)(1368-5823)[77( 1648-4825) +44(2537-3716) 

+47( 12 - 78)( 56 + 78) +47( 56 + 78)( 12 - 78)]* 

+[( 13 18 + 5835)( 12 - 78) + 18( 13 16 - 5837) +35(5825 - 1348)] 

X [ 17(4857 - 1614) +45(3714 - 2557) - 14( 12 - 78) 17 - 57( 12 - 78)45]* 

+[(2435 +6718)(12-78) +27(5825- 1348) +46(1316-5837)] 

X [17( 1668-4823) +45(2523 -3768) + 14( 12-78)36 +57( 12 -78)28]* 

+ [( 1346 + 5827)( 12 - 78) + 35(2425 - 6748) + 18(67 16 - 2437)] 

X [36( 161 4 - 4857) + 28(2557 - 37 14) + 68( 12 - 78) 17 + 23( 12 - 78)45]* 

+ [(2427 +6746)( 12 - 78) +27(6748 - 2425) +46(2437 - 6716)] 

X [28(3768 - 2523) +36(4823 - 1668) -68( 12 - 78)36 - 23( 12 - 78)28]* 

+(At .D ,  B-E,  C-F) 

e = d(C, A, B, F, D, E)  

f =  d ( B ,  C, A, E, F, D). 
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The special case of w , , ~  = W,,g = 0 corresponds to the ice-rule vertex model. In this 
case we have 

(7) d e i ( B - + )  - dl e - i ( B - + )  2 I F (  8, 4) = la - b eie - b' e-ie - c ei+ - C I  e-i+ - 

where 

a = ( 1  1 1  + 5 5 5 ) (  1 1  1 + 5 5 5 ) *  +(222 +666)(222 +666)* 

+ 345( 345)* +453(453)* + 534( 534)* 

+ 364( 364)* + 643(643)* + 436( 436)* 

b =314(161+525)* +(616+252)(423)* 

b '= (161 +525)(314)*+423(616+252)* 

c=(l16+552)(431)*+342(661+225)* 

C' = 43 1 ( 1 16 +552)* + (661 +225)(342)* 

d = (61 1 +255)( 143)* +234( 166 +522)* 

d ' =  143(611+255)*+(166+522)(234)*. 

The expression (6) for the free energy is the same as that for the free energy of the 
eight-vertex free-fermion model on a KagomC lattice (Lin 1976). It is easy to check 
that F (  8, 4)  = 0 at the following points: 

e = d = o  
e = 7 T , + = o  
e=o ,  4 = 7 T  
e=d=.rr 

In general, all the zeros of F (  8, 4)  = 0 are given by (8) and the critical temperature 
T, is determined by A( T,) = 0 where 

A( T )  = R ,  +R, +a, + R 4 - 2  max{Rl, R2, R3, R4}. (9) 

To be specific, we consider the non-analyticity of 4 at R I  = R, +R, +a4. Following 
Hsue et a1 (1975), we expand F (  0,4) = 0 about 0 = 4 = 0 and obtain 

+singular- d e  d 4  ln[(fli - f12 -n3-~4 )2+~@2+~e4  + ~ 4 ' ]  ( 1 0 )  I I  
- ( T - T,)' In1 T - T , I .  

The specific heat diverges logarithmically. The argument breaks down if 

p 2 = 4 f f y  ( 1  1) 

at T, (Hsue et a1 1975). The condition ( 1  1 )  implies that there exist zeros of F (  8,4) = 0 
which are not given by (8). In this case the system exhibits first- or second-order phase 
transition. The ice-rule vertex model is an example. In this special case the system 
exhibits second-order phase transition and the specific heat diverges with an exponent 
a =: above the transition temperature (Lin 1975). 
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Appendix. Pfaffian solution 

Expand each site of a ruby lattice into a 'city' of four terminals to form a dimer lattice. 
A unit cell of the dimer lattice is shown in figure 3 which corresponds to a 24th-order 
matrix with elements 

a ( i , j )  = - a * ( j ,  i ) .  ( A I )  

Figure 3. A unit cell of the dimer lattice which corresponds to a 24th-order matrix 

A periodic boundary condition is assumed. The sign of each element is identified by 
an arrow such that its pointing from i to j implies sgn a( i ,  j )  = + I .  A polygon with 
an odd number of clockwise sides is called clockwise odd. Arrows are arranged so 
that every closed polygon is clockwise odd. Following the same procedure as Hsue 
er a1 (1975), we have 

cc, = lo2" de loZm d 4  In [ ( 0 A . 2 w ~ , 2 w c , z w D , 2 w E , 2 ~ ~ , 2 ) 2 ~ ( e ,  411 ('42) 48 r2 

where D(0,  4)  is the determinant of the matrix a ( i , j )  and the non-vanishing matrix 
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elements associated with positive signs are: 

a ( l , 3 )  = u3, a(2 ,4)  = U47 a(3 ,4)  = U59 a(  1, 2 )  = U69 

a(4,  1 )  = U77 a(3,  2) = U8 

a(7,5)  = U;, a(6 ,8 )  = U:, a(8 ,7)  = U;, a ( 5 , 6 )  - uk, 

a(8,5)  = U;, a(6,7)  = U; 

a(9, 1 1 )  = U;, a (  10,12) = U,”, a(  11, 12) = U;, a(9,  10) = U: , 

a( 12,9) = U$’, a( 11, 10) = U ;  

a(3’, 1’)  = u3, a(4’, 2‘) = u4, a(3‘, 4’) = u5, a(  l‘, 2’) = u6, 

a ( 1 ‘, 4’) = u7, a (2’, 3’) = ?& 

a(7‘, 5’) = us, a(8’, 6’) = c;, a(7’, 8’) = U;, a(5’, 6’) = U;, 

a(5’, 8’) = U:, a(6‘ ,  7’) = U; 

a(9‘, 11’) = U:, a( lo’, 12’) = U,”, a( 1 l’, 12’) = U;, a(9‘, 10’) = U,”, 

a( 12’, 9‘) = U;, a(  1 l’, 10’) = ug 

~ ( 1 , 6 ) = ~ ( 1 ’ , 6 ’ ) = ~ ( 9 , 2 ) = ~ ( 9 ’ , 2 ’ ) = ~ ( 5 ,  lO)=a(5’,  10’)=a(8,  11’) 

=a(8 ’ ,  1 1 ) =  1 

a(4,7’) = exp(iO), a(4‘, 7) = exp(-iO), a(  12,3’) = exp(i4),  

a(  12’, 3) = exp(-i4) 

ut ~ A , , l w A , z ,  U: = % , l I ~ B , Z ,  U: = wc,,/wc,z 

U1 = ~ D . I l ~ , , Z ,  v :  = % , , / @ E , > ,  U:= wF,,/wF,2. 

Equation (A2) reduces to equation (6) after some algebra. 
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